CBCS SCHEME

15MAT21 USN

Second Semester B.E. Degree Examination, Jan./Feb. 2023 Engineering Mathematics - II

Time: 3 hrs. Max. Marks: 80

Note: 1. Answer FIVE full questions, choosing ONE full question from each module. 2. Missing data, if any, may be suitably assumed.

Module-1

1 a. Solve:
$$\frac{d^3y}{dx^3} - 7\frac{dy}{dx} + 6y = x^2 - x + 1$$
 by inverse differential operator method. (06 Marks)

b. Solve:
$$(D^3 + 6D^2 + 11D + 6)y = e^x + 1$$
 by inverse differential operator method. (05 Marks)

c. Solve:
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = e^x$$
 by the method of undetermined coefficient. (05 Marks)

2 a. Solve:
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 4y = e^x \cos x$$
 by inverse differential operator method. (06 Marks)

b. Solve:
$$\frac{d^2y}{dx^2} + 4y = x \sin x$$
 by inverse differential operator method. (05 Marks)

c. Solve:
$$\frac{d^2y}{dx^2} + y = \sec x \tan x$$
 by the method of variation of parameters. (05 Marks)

Module-2

3 a. Solve:
$$(2x+1)^2 \frac{d^2y}{dx^2} - 2(2x+1)\frac{dy}{dx} - 12y = 3(2x+1)$$
. (06 Marks)

b. Solve:
$$p - \frac{1}{p} = \frac{x}{y} - \frac{y}{x}$$
. (05 Marks)

c. Find the general and singular solution of the equation:
$$y = Px + 2P^2$$
. (05 Marks)

4 a. Solve:
$$x^3 \frac{d^3y}{dx^3} + 3x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + 8y = 65\cos(\log x)$$
. (06 Marks)

b. Solve:
$$x^4P^2 + 2x^3Py - 4 = 0$$
 by solvable for y. (05 Marks)

c. Solve the equation: (px - y)(py + x) = 2p by reducing into Clairaut's form, taking the substitutions $X = x^2$, $Y = y^2$. (05 Marks)

Module-3

- a. Obtain the partial differential equation : $f(x^2 + 2yz, y^2 + 2zx) = 0$ (06 Marks)
 - b. Solve $\frac{\partial^2 z}{\partial x \partial y} = \frac{x}{y}$ subject to the conditions $\frac{\partial z}{\partial x} = \log_e x$ when y = 1 and z = 0 when x = 1. (05 Marks)
 - c. Find the solution of the wave equation : $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ by the method of separation of variables for constant K = 0. (05 Marks)

OR

a. Obtain the partial differential equation by eliminating the arbitrary function given:

$$z = e^{ax + by} f(ax - by).$$
 (06 Marks)

b. Solve:
$$\frac{\partial^2 z}{\partial x^2} = a^2 z$$
 given that when $x = 0$, $\frac{\partial z}{\partial x} = a \sin y$ and $\frac{\partial z}{\partial y} = 0$. (05 Marks)

c. Derive one dimensional heat equation:
$$\frac{\partial u}{\partial t} = C^2 \frac{\partial^2 u}{\partial x^2}$$
. (05 Marks)

7 a. Evaluate:
$$\int_{z=-1}^{1} \int_{x=0}^{z} \int_{y=x-z}^{x+z} (x+y+z) dy dx dz.$$
 (06 Marks)

- b. Evaluate by changing the order of integration: $\int \int dx dy$. (05 Marks)
- Obtain the relation between beta and gamma function in the form:

$$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}.$$
 (05 Marks)

- Evaluate: $\int_{0}^{a} \int_{0}^{\sqrt{x^2 + y^2}} dy dx$ by changing into polar coordinates. (06 Marks)
 - b. Find the area enclosed by the curve $r = a(1 + \cos \theta)$ between $\theta = 0$ and $\theta = \pi$ by double (05 Marks) integration.
 - c. Evaluate: $\int_{0}^{1} x^{\frac{3}{2}} (1-x)^{\frac{1}{2}} dx$ by using Beta and Gamma functions. (05 Marks)

Module-5

- 9 a. Find:
 - i) L(cost cos2t cos3t)

ii)
$$L\left[\frac{\cos at - \cos bt}{t}\right]$$
. (06 Marks)

b. Find:
$$L^{-1}\left[\frac{s^2}{(s^2+a^2)^2}\right]$$
 by using convolution theorem. (05 Marks)

c. Given:
$$f(t) = \begin{cases} E; & 0 < t < \frac{a}{2} \\ -E; & \frac{a}{2} < t < a \end{cases}$$
 where $f(t+a) = f(t)$, show that $L[f(t)] = \frac{E}{S} \tan h \left(\frac{as}{4}\right)$. (05 Marks)

OR

10 a. Find:

i)
$$L^{-1} \left[\frac{3s+2}{(s+1)(s-2)} \right]$$

ii)
$$L^{-1} \left[log \left(\frac{s+a}{s+b} \right) \right]$$
. (06 Marks)

b. Express:
$$f(t) = \begin{cases} 1 ; & 0 < t \le 1 \\ t ; & 1 < t \le 2 \\ t^2 ; & t > 2 \end{cases}$$

interms of unit step function and hence find its Laplace transforms.

(05 Marks)

c. Solve the differential equation:

$$y''' + 2y'' - y' - 2y = 0$$
 given $y(0) = 0$; $y'(0) = 0$ and $y''(0) = 6$,
using Laplace transforms. (05 Marks)

* * * * *